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Abstract
The present paper is a sequel to the paper by Karchev (2008 J. Phys.: Condens. Matter
20 325219). A two-sublattice ferrimagnet, with spin-s1 operators S1i at the sublattice A site and
spin-s2 operators S2i at the sublattice B site, is considered. Renormalized spin-wave theory,
which accounts for the magnon–magnon interaction, and its extension are developed to describe
the two ferrimagnetic phases (0, T ∗) and (T ∗, TN) in the system, and to calculate the
magnetization as a function of temperature.

The influence of the parameters in the theory on the characteristic temperatures TN and T ∗
is studied. It is shown that, increasing the inter-sublattice exchange interaction, the ratio
TN/T ∗ > 1 decreases approaching one, and above some critical value of the exchange constant
there is only one phase TN = T ∗, and the magnetization–temperature curve has the typical
Curie–Weiss profile. When the intra-exchange constant of the sublattice with stronger
intra-exchange interaction increases the Néel temperature increases while T ∗ remains
unchanged. Finally, when the magnetic order of the sublattice with smaller magnetic order
decreases, T ∗ decreases. The theoretical predictions are utilized to interpret the experimentally
measured magnetization–temperature curves.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present paper is a sequel to the paper [1]. A two-sublattice
ferrimagnet, with spin-s1 operators S1i at the sublattice A site
and spin-s2 operators S2i at the sublattice B site. The true
magnons of a two-spin system are transversal fluctuations of
the total magnetization which includes both the magnetization
of the sublattice A and B spins. The magnon excitation is
a complicated mixture of the transversal fluctuations of the
sublattice A and B spins. As a result the magnons’ fluctuations
suppress, in different ways, the magnetic orders on the different
sublattices and one obtains two phases. At low temperature
(0, T ∗) the magnetic orders of the A and B spins contribute
to the magnetization of the system, while at high temperature
(T ∗, TN) the magnetization of the spins with a weaker intra-
sublattice exchange is suppressed by magnon fluctuations, and
only the spins with the stronger intra-sublattice exchange have
non-zero spontaneous magnetization.

Renormalized spin-wave theory, which accounts for the
magnon–magnon interaction, and its extension are developed
to describe the two ferrimagnetic phases in the system and
to calculate the magnetization as a function of temperature.
It is impossible to require the theoretically calculated Néel
temperature and magnetization–temperature curves to be in
exact accordance with experimental results. The models are

idealized, and they do not consider many important effects:
phonon modes, several types of disorder, Coulomb interaction,
etc. Because of this it is important to formulate theoretical
criteria for the adequacy of the method of calculation. In
my opinion the calculations should be in accordance with the
Mermin–Wagner theorem [2]. It claims that in two dimensions
there is no spontaneous magnetization at non-zero temperature.
Hence, the critical temperature should be equal to zero. It is
well known that the Monte Carlo method of calculation does
not satisfy this criteria, and a ‘weak z coupling’ 3D system
is used to mimic a 2D layer. It is difficult within dynamical
mean-field theory (DMFT) to make a difference between two-
dimensional and three-dimensional systems. DMFT is a good
approximation when the dimensionality goes to infinity. The
present methods of calculation, being approximate, capture
the basic physical features and satisfy the Mermin–Wagner
theorem.

There is an important difference between Néel theory [3]
and the results in the present paper. Néel’s calculations
predict a temperature TN at which both the sublattice A and B
magnetizations become equal to zero and T ∗ is a temperature
at which the magnetic moment has a maximum.

The influence of the parameters in the theory on the
characteristic temperatures TN and T ∗ is studied. It is shown
that, increasing the inter-sublattice exchange interaction, the
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ratio TN/T ∗ > 1 decreases approaching one, and above some
critical value of the exchange constant there is only one phase
TN = T ∗, and the magnetization–temperature curve has the
typical Curie–Weiss profile. When the intra-exchange constant
of the sublattice with stronger intra-exchange interaction
increases the Néel temperature increases while T ∗ remains
unchanged. Finally, when the magnetic order of the sublattice
with smaller magnetic order decreases, T ∗ decreases.

To compare the theoretical results and the experimental
magnetization–temperature curves one has, first of all, to
interpret adequately the measurements. The magnetic
moments in some materials are close to the ‘spin-only’ value
2μBS and the sublattice spins s1 and s2 can be obtained
from the experimental curves. As an example I consider
the sulfo-spinel MnCr2S4−x Sex [4]. On the other hand there
are ferrimagnets with strong spin–orbital interaction. It is
convenient, in that case, to consider j j coupling with JA =
LA + SA and JB = LB + SB. As an example I consider the
vanadium spinel MnV2O4 [5–8].

This paper is organized as follows. In section 2 the model
is presented and a renormalized spin-wave theory is worked out
to calculate the magnetization–temperature curves for different
parameters of the model. The influence of the theoretical
parameters on the Néel and T ∗ temperatures is studied in
section 3. I consider three cases: (i) when the inter-sublattice
exchange constant increases and all the other parameters are
fixed, (ii) one of the intra-sublattice parameters is changed
and (iii) when one of the spins decreases. Applications
and analyses of the experimental magnetization–temperature
curves are given in section 4. A summary in section 5
concludes the paper.

2. Spin-wave theory

2.1. Renormalized spin-wave (RSW) theory

The Hamiltonian of the system is

H = −J1

∑

〈〈i j〉〉A

S1i · S1 j − J2

∑

〈〈i j〉〉B

S2i · S2 j + J
∑

〈i j〉
S1i · S2 j

(1)
where the sums are over all sites of a three-dimensional cubic
lattice: 〈i, j〉 denotes the sum over the nearest neighbors,
〈〈i, j〉〉A denotes the sum over the sites of the A sublattice and
〈〈i, j〉〉B denotes the sum over the sites of the B sublattice.
The first two terms describe the ferromagnetic Heisenberg
intra-sublattice exchange J1 > 0, J2 > 0, while the
third term describes the inter-sublattice exchange which is
antiferromagnetic J > 0. To study a theory with the
Hamiltonian equation (1) it is convenient to introduce the
Holstein–Primakoff representation for the spin operators:

S+
1 j = S1

1 j + iS2
1 j =

√
2s1 − a+

j a j a j

S−
1 j = S1

1 j − iS2
1 j = a+

j

√
2s1 − a+

j a j

S3
1 j = s1 − a+

j a j

(2)

when the sites j are from sublattice A and

S+
2 j = S1

2 j + iS2
2 j = −b+

j

√
2s2 − b+

j b j

S−
2 j = S1

2 j − iS2
2 j = −

√
2s2 − b+

j b j b j

S3
2 j = −s2 + b+

j b j

(3)

when the sites j are from sublattice B. The operators a+
j , a j

and b+
j , b j satisfy the Bose commutation relations. In terms of

the Bose operators and keeping only the quadratic and quartic
terms, the effective Hamiltonian equation (1) adopts the form

H = H2 + H4 (4)

where

H2 = s1 J1

∑

〈〈i j〉〉A

(a+
i ai + a+

j a j − a+
j ai − a+

i a j )

+ s2 J2

∑

〈〈i j〉〉B

(b+
i bi + b+

j b j − b+
j bi − b+

i b j)

+ J
∑

〈i j〉
[s1b+

j b j + s2a+
i ai − √

s1s2(a
+
i b+

j + ai b j)] (5)

H4 = 1
4 J1

∑

〈〈i j〉〉A

[a+
i a+

j (ai − a j)
2 + (a+

i − a+
j )2ai a j ]

+ 1
4 J2

∑

〈〈i j〉〉B

[b+
i b+

j (bi − b j)
2 + (b+

i − b+
j )2bi b j ]

+ 1

4
J

∑

〈i j〉

[√
s1

s2
(ai b

+
j b j b j + a+

i b+
j b+

j b j)

+
√

s2

s1
(a+

i ai ai b j + a+
i a+

i ai b
+
j ) − 4a+

i ai b
+
j b j

]
(6)

and the terms without operators are dropped.
The next step is to represent the Hamiltonian in the

Hartree–Fock approximation:

H ≈ HHF = Hcl + Hq (7)

where

Hcl = 12N J1s2
1 (u1 − 1)2 + 12N J2s2

2 (u2 − 1)2

+ 6N Js1s2(u − 1)2, (8)

H2 = s1 J1u1

∑

〈〈i j〉〉A

(a+
i ai + a+

j a j − a+
j ai − a+

i a j)

+ s2 J2u2

∑

〈〈i j〉〉B

(b+
i bi + b+

j b j − b+
j bi − b+

i b j)

+ Ju
∑

〈i j〉
[s1b+

j b j + s2a+
i ai − √

s1s2(a
+
i b+

j + ai b j)] (9)

and N = NA = NB is the number of sites on a sublattice.
Equation (9) shows that the Hartree–Fock parameters u1, u2

and u renormalize the intra-exchange constants J1, J2 and the
inter-exchange constant J , respectively.

It is convenient to rewrite the Hamiltonian in the
momentum space representation:

Hq =
∑

k∈Br

[εa
k a+

k ak + εb
k b+

k bk − γk(a
+
k b+

k + bkak)], (10)
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where the wavevector k runs over the reduced first Brillouin
zone Br of a cubic lattice. The dispersions are given by the
equalities

εa
k = 4s1 J1u1εk + 6s2 Ju

εb
k = 4s2 J2u2εk + 6s1 Ju

γk = 2Ju
√

s1s2(cos kx + cos ky + cos kz)

(11)

with

εk = 6 − cos(kx + ky) − cos(kx − ky) − cos(kx + kz)

− cos(kx − kz) − cos(ky + kz) − cos(ky − kz). (12)

To diagonalize the Hamiltonian one introduces new Bose fields
αk, α

+
k , βk, β

+
k by means of the transformation

ak = ukαk + vkβ
+
k a+

k = ukα
+
k + vkβk

bk = ukβk + vkα
+
k b+

k = ukβ
+
k + vkαk

(13)

where the coefficients of the transformation uk and vk are real
functions of the wavevector k:

uk =
√√√√1

2

(
εa

k + εb
k√

(εa
k + εb

k )
2 − 4γ 2

k

+ 1

)

vk = sgn(γk)

√√√√1

2

(
εa

k + εb
k√

(εa
k + εb

k )
2 − 4γ 2

k

− 1

)
.

(14)

The transformed Hamiltonian adopts the form

Hq =
∑

k∈Br

(Eα
k α+

k αk + Eβ

k β+
k βk + E0

k ), (15)

with new dispersions

Eα
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k − εb

k + εa
k

]

Eβ

k = 1
2

[√
(εa

k + εb
k )

2 − 4γ 2
k + εb

k − εa
k

] (16)

and vacuum energy

E0
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k − εb

k − εa
k

]
. (17)

For positive values of the Hartree–Fock parameters and
all values of k ∈ Br, the dispersions are nonnegative Eα

k �
0, Eβ

k � 0. For definiteness I choose s1 > s2. With
these parameters, the αk boson is the long-range (magnon)
excitation in the two-spin system with Eα

k ∝ ρk2, near the
zero wavevector, while the βk boson is a gapped excitation.

To obtain the system of equations for the Hartree–Fock
parameters we consider the free energy of a system with
Hamiltonian HHF equations (8) and (15):

F = 12J1s2
1 (u1 − 1)2 + 12J2s2

2 (u2 − 1)2

+ 6Js1s2(u − 1)2 + 1

N

∑

k∈Br

E0
k + 1

β N

×
∑

k∈Br

[ln(1 − e−βEα
k ) + ln(1 − e−βEβ

k )] (18)

where β = 1/T is the inverse temperature. Then the three
equations

∂F/∂u1 = 0, ∂F/∂u2 = 0, ∂F/∂u = 0 (19)

adopt the form (see the appendix)

u1 = 1 − 1

6s1

1

N

∑

k∈Br

εk[u2
knα

k + v2
k nβ

k + v2
k ]

u2 = 1 − 1

6s2

1

N

∑

k∈Br

εk[v2
k nα

k + u2
knβ

k + v2
k ]

u = 1 − 1

N

∑

k∈Br

[
1

2s1
(u2

knα
k + v2

k nβ

k + v2
k )

+ 1

2s2
(v2

k nα
k + u2

knβ

k + v2
k )

− 2

3
Ju(1 + nα

k + nβ

k )
(cos kx + cos ky + cos kz)

2

√
(εa

k + εb
k )

2 − 4γ 2
k

]

(20)

where nα
k and nβ

k are the Bose functions of α and β excitations.
The Hartree–Fock parameters, the solution of the system of
equations (20), are positive functions of T/J , u1(T/J ) >

0, u2(T/J ) > 0 and u(T/J ) > 0. Utilizing these functions,
one can calculate the spontaneous magnetization of the system,
which is a sum of the spontaneous magnetization on the two
sublattices M = MA + MB, where

MA = 〈S3
1 j 〉 j is from sublattice A

MB = 〈S3
2 j 〉 j is from sublattice B.

(21)

In terms of the Bose functions of the α and β excitations they
adopt the form

MA = s1 − 1

N

∑

k∈Br

[u2
knα

k + v2
k nβ

k + v2
k ]

MB = −s2 + 1

N

∑

k∈Br

[v2
k nα

k + u2
knβ

k + v2
k ].

(22)

The magnon excitation—αk in the effective theory
equation (15)—is a complicated mixture of the transversal
fluctuations of the A and B spins. As a result the magnons’
fluctuations suppress in a different way the magnetization
on sublattices A and B. Quantitatively this depends on the
coefficients uk and vk in equations (22). At characteristic
temperature T ∗ spontaneous magnetization on sublattice B
becomes equal to zero, while spontaneous magnetization on
sublattice B is still non-zero. Above T ∗ the system of
equations (20) has no solution and one has to modify the spin-
wave theory. The magnetization depends on the dimensionless
temperature T/J and dimensionless parameters s1, s2, J1/J
and J2/J . For parameters s1 = 1.5, s2 = 1, J1/J = 0.94
and J2/J = 0.01 the functions MA(T/J ) and MB(T/J ) are
depicted in figure 1. The upper (red) line is the sublattice A
magnetization, while the bottom (blue) line is the sublattice B
magnetization.
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Figure 1. The spontaneous magnetization MA—upper (red) line and
MB—bottom (blue) line as a function of T/J for parameters
s1 = 1.5, s2 = 1, J1/J = 0.94 and J2/J = 0.01. T ∗ is the
temperature at which sublattice B magnetization becomes equal to
zero.

2.2. Modified RSW theory

Once suppressed, the sublattice B magnetization cannot be
restored by increasing the temperature above T ∗. To formulate
this mathematically we modify the spin-wave theory using
the idea of a description of the paramagnetic phase of 2D
ferromagnets (T > 0) by means of modified spin-wave
theory [10, 11] and its generalization [1]. We consider a two-
sublattice system and, to enforce the magnetization on the two
sublattices to be equal to zero in the paramagnetic phase, we
introduce two parameters λA and λB [1]. The new Hamiltonian
is obtained from the old one equation (1) by adding two new
terms:

Ĥ = H −
∑

i∈A

λ1 S3
1i +

∑

i∈B

λ2S3
2i . (23)

In momentum space the new Hamiltonian adopts the form

Ĥ =
∑

k∈Br

[ε̂a
k a+

k ak + ε̂b
k b+

k bk − γk(bkak + b+
k a+

k )] (24)

where the new dispersions are

ε̂a
k = εa

k + λ1, ε̂b
k = εb

k + λ2. (25)

Utilizing the same transformation equations (13) with
parameters

ûk =
√√√√1

2

(
ε̂a

k + ε̂b
k√

(ε̂a
k + ε̂b

k )
2 − 4γ 2

k

+ 1

)

v̂k = sgn(γk)

√√√√1

2

(
ε̂a

k + ε̂b
k√

(ε̂a
k + ε̂b

k )
2 − 4γ 2

k

− 1

) (26)

one obtains the Hamiltonian in diagonal form

Ĥ =
∑

k∈Br

(Êα
k α+

k αk + Êβ

k β+
k βk + Ê0

k ), (27)

where

Êα
k = 1

2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k − ε̂b

k + ε̂a
k

]

Êβ

k = 1
2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k + ε̂b

k − ε̂a
k

]

Ê0
k = 1

2

[√
(ε̂a

k + ε̂b
k )

2 − 4γ 2
k − ε̂b

k − ε̂a
k

]
.

(28)

It is convenient to represent the parameters λ1 and λ2 in
the form

λ1 = 6Jus2(μ1 − 1), λ2 = 6Jus1(μ2 − 1). (29)

In terms of the new parameters μ1 and μ2 the dispersions ε̂a
k

and ε̂b
k adopt the form

ε̂a
k = 4s1 J1u1εk + 6s2 Juμ1

ε̂b
k = 4s2 J2u2εk + 6s1 Juμ2.

(30)

They are positive (ε̂a
k > 0, ε̂b

k > 0) for all values of the
wavevector k, if the parameters μ1 and μ2 are positive (μ1 >

0, μ2 > 0). The dispersion equations (28) are well defined if
square roots in equations (28) are well defined. This is true if

μ1μ2 � 1. (31)

The βk excitation is gapped (Eβ

k > 0) for all values of
parameters μ1 and μ2 which satisfy equation (31). The α

excitation is gapped if μ1μ2 > 1, but in the particular case

μ1μ2 = 1. (32)

Êα
0 = 0, and near the zero wavevector

Êα
k ≈ ρ̂k2 (33)

with the spin-stiffness constant

ρ̂ = 8(s2
2 J2u2μ1 + s2

1 J1u1μ2) + 2s1s2 Ju

(s1μ2 − s2μ1)
. (34)

In the particular case equation (32) the αk boson is the long-
range excitation (magnon) in the system.

We introduced the parameters λ1 and λ2 (μ1, μ2) to
enforce the sublattice A and B spontaneous magnetizations
to be equal to zero in the paramagnetic phase. We find
out the parameters μ1 and μ2, as well as the Hartree–Fock
parameters, as functions of temperature, solving the system
of five equations, equations (20) and the equations MA =
MB = 0, where the spontaneous magnetizations have the
same representation as equations (22) but with coefficients
ûk, v̂k , and dispersions Êα

k , Êβ

k in the expressions for the
Bose functions. The numerical calculations show that for
high enough temperature μ1μ2 > 1. When the temperature
decreases the product μ1μ2 decreases, remaining larger than
one. The temperature at which the product becomes equal
to one (μ1μ2 = 1) is the Néel temperature. Below TN, the
spectrum contains long-range (magnon) excitations, thereupon
μ1μ2 = 1. It is convenient to represent the parameters in the
following way:

μ1 = μ, μ2 = 1/μ. (35)

4
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Figure 2. Hartree–Fock parameters u1, u2 and u as a function of
T/J for s1 = 1.5, s2 = 1, J1/J = 0.94 and J2/J = 0.01. The
vertical dotted (green) line corresponds to T ∗/J .

Figure 3. μ(T/J ) for parameters s1 = 1.5, s2 = 1, J1/J = 0.94 and
J2/J = 0.01. The vertical dotted (green) line corresponds to T ∗/J ,
while (red) dashed lines to TN/J and μ(TN/J ).

In the ordered phase magnon excitations are the origin of
the suppression of the magnetization. Near zero temperature
their contribution is small and at zero temperature sublattice
A and B spontaneous magnetization reach their saturation.
On increasing the temperature magnon fluctuations suppress
the sublattice A magnetization and sublattice B magnetization
in different ways. At T ∗ the sublattice B spontaneous
magnetization becomes equal to zero. Increasing the
temperature above T ∗, the sublattice B magnetization should
be zero. This is why we impose the condition MB(T ) = 0
if T > T ∗. For temperatures above T ∗, the parameter μ

and the Hartree–Fock parameters are solutions of a system
of four equations, equations (20) and the equation MB = 0.
The Hartree–Fock parameters, as a function of temperature

Figure 4. (a) The sublattice A spontaneous magnetization
MA—upper (blue) line and sublattice B spontaneous magnetization
MB—bottom (red) line as a function of T/J for parameters
s1 = 1.5, s2 = 1, J1/J = 0.94 and J2/J = 0.01. (b) The total
spontaneous magnetization MA + MB. T ∗/J —vertical dotted
(green) line.

T/J , are depicted in figure 2 for parameters s1 = 1.5, s2 =
1, J1/J = 0.94 and J2/J = 0.01. The vertical dotted (green)
line corresponds to T ∗/J .

The function μ(T/J ) is depicted in figure 3 for the same
parameters.

We utilize the obtained function μ(T ), u1(T ), u2(T ), u(T )

to calculate the spontaneous magnetization as a function of the
temperature. Above T ∗, the magnetization of the system is
equal to the sublattice A magnetization. For the same param-
eters as above the functions MA(T/J ) and MB(T/J ) are de-
picted in figure 4(a). The upper (blue) line is the sublattice A
magnetization, while the bottom (red) line is the sublattice B
magnetization. The total magnetization M = MA + MB is
depicted in figure 4(b).

3. TN and T ∗ dependence on model’s parameters

The existence of two ferromagnetic phases (0, T ∗) and
(T ∗, TN) is a generic feature of two-spin systems. The

5
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Figure 5. The magnetization 2MA + 2MB as a function of T/J for
s1 = 1.5 and s2 = 1. Curve a: J1/J = 0.05, J2/J = 0.0005, curve
b: J1/J = 0.3, J2/J = 0.003, curve c: J1/J = 0.5, J2/J = 0.005.

characteristic temperatures TN and T ∗ strongly depend on
the parameters of the model. Intuitively, it is clear that, if
the inter-exchange is much stronger than intra-exchange, the
ferromagnetic order sets in simultaneously on both sublattices.
This is not true, if inter-exchange is not so strong. To
demonstrate this I study a system with sublattice A spin s1 =
1.5 and sublattice B spin s2 = 1. For the parameters J1/J =
0.5 and J2/J = 0.005 the magnetization–temperature curve is
depicted in figure 5 curve ‘c’. The ratio of the characteristic
temperatures equals TN/T ∗ = 1.722. Increasing the inter-
exchange coupling, J1/J = 0.3, J2/J = 0.003 (curve ‘b’), the
ratio decreases, TN/T ∗ = 1.229, and above some critical value
of the inter-exchange constant J1/J = 0.05, J2/J = 0.0005
Néel’s temperature becomes equal to T ∗. There is only one
ferromagnetic phase and magnetization–temperature curve ‘a’
is a typical Curie–Weiss curve. Despite this the system does
not describe a ferromagnet, because the spin-wave excitations
are superpositions of the sublattice A and B spin excitations.

Next, I consider a system with sublattice A spin s1 = 1.5
and sublattice B spin s2 = 1. The ratio of sublattice B
exchange constant J2 and inter-exchange constant J is fixed
j2 = J2/J = 0.01, while the ratio j1 = J1/J varies. When
the sublattice A exchange constant J1 increases j1 = J1/J =
0.64, 0.84 and 0.94, the magnetization–temperature curve at
temperatures below T ∗ does not change. There is no visible
difference between T ∗ temperatures for the three values of the
parameter J1/J . The difference appears when the temperature
is above T ∗. Increasing the sublattice A exchange constant
increases the Néel temperature. The three curves are depicted
in figure 6.

Finally, I consider three systems with equal exchange
constants J1/J = 0.4, J2/J = 0.004 and sublattice A spin
s1 = 4, but with three different sublattice B spins (figure 7).
The calculations show that decreasing the sublattice B spin
decreases the T ∗ temperature, increases the maximum of
magnetization at T ∗ and zero temperature magnetization.

Figure 6. The magnetization 2MA + 2MB as a function of T/J for
s1 = 1.5, s2 = 1, j2 = J2/J = 0.01 and three values of the
parameter j1 = J1/J ; j1 = 0.94 (black) squares, j1 = 0.84 (red)
circles and j1 = 0.64 (blue) triangles.

Figure 7. The magnetization 2MA + 2MB as a function of T/J for
J1/J = 0.4, J2/J = 0.004, s1 = 4 and s2 = 0.5—curve a (green),
s2 = 1.5—curve b (red), s2 = 2.5—curve c (black).

4. Theory and experiment

4.1. Sulfo-spinel MnCr2S4−xSex

The sulfo-spinel MnCr2S4−xSex has been investigated by
measurements of the magnetization at 15.3 kOe as a function
of temperature (figure 94 in [4]). The maximum in the
magnetization versus temperature curve, which is typical of
MnCr2S4 (x = 0), increases when x increases and disappears
at x = 0.5. The Néel temperature decreases from 74 K at
x = 0 to 56 K at x = 2. The authors’ conclusion is that
the observed change of the magnetic properties is attributed
to a decrease of the strength of the negative Mn2+–Cr3+
superexchange interaction with increasing Se concentration.

We obtained, see figure 5, that the maximum of the
magnetization is at T ∗. Above T ∗ the magnetization of the

6
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Figure 8. The magnetization 2MA + 2MB as a function of T/J for
J1/J = 0.47, J2/J = 0.001, s1 = 1.5 and s2 = 1—curve a (black),
s2 = 0.7—curve b (red), s2 = 0.4—curve c (blue).

system is equal to the magnetization of sublattice A spins. If
we extrapolate this curve below T ∗ down to zero temperature
we will obtain a value close to 2s1μB, where s1 is the spin of the
sublattice A spin operators. The experimental figures [4] show
that extrapolations give one and the same result for all values
of x . One can accept the fact that the Se concentration does not
influence the value of the sublattice A spin and s1 = 1.5.

Below T ∗ the magnetization is a sum of sublattice A
and B magnetization. Hence, the magnetization at zero
temperature is equal to 2(s1 − s2)μB. Therefore, one can
determine the sublattice B spin s2. The results of the theoretical
calculations of magnetization, in Bohr magnetons, are depicted
in figure 8 for parameters s1 = 1.5, J1/J = 0.47, J2/J =
0.001 and s2 = 1—curve a (black); s2 = 0.7—curve b
(red) and s2 = 0.4—curve c (blue). The temperature
and magnetization axes are chosen in accordance with the
experimental figure. Comparing figure 94 in [4] and figure 6 in
the present paper, one concludes that the effective sublattice
B spin s2 decreases with increasing Se concentration, and
this is the origin of the anomalous temperature variation of
magnetization. Figure 8 shows that the present calculations
capture the essential features of the system; increasing the
Se concentration (decreasing s2) leads to a decrease of Néel
temperature, the T ∗ temperature decreases too, and the
maximum of the magnetization increases. Comparing figure 8
in the present paper and figure 5 in [1] one realizes the
importance of the present method of calculation for adequately
reproducing the characteristic temperatures TN, T ∗ and the
shape of the magnetization–temperature curves.

4.2. Vanadium spinel MnV2O4

The spinel MnV2O4 is a two-sublattice ferrimagnet, with site
A occupied by the Mn2+ ion, which is in the 3d5 high-
spin configuration with quenched orbital angular momentum,
which can be regarded as a simple s = 5/2 spin. The B

Figure 9. The magnetization gA MA + gB MB as a function of T/κ
for parameters κA/κ = 0.45 and κB/κ = 0.001.

site is occupied by the V3+ ion, which takes the 3d2 high-
spin configuration in the triply degenerate t2g orbital and has
orbital degrees of freedom. The measurements show that the
setting in of the magnetic order is at the Néel temperature
TN = 56.5 K [5] and that the magnetization has a maximum
near T ∗ = 53.5 K. Below this temperature the magnetization
sharply decreases and goes to zero when the temperature
approaches zero.

We consider a system which obtains its magnetic
properties from Mn and V magnetic moments. Because of the
strong spin–orbital interaction it is convenient to consider j j
coupling with JA = SA and JB = LB + SB. The sublattice
A total angular momentum is jA = sA = 5/2, while the
sublattice B total angular momentum is jB = lB + sB, with
lB = 3 and sB = 1 [5]. Then the g factor for sublattice A is
gA = 2 and the atomic value of gB is gB = 5

4 . The sublattice
A magnetic order is antiparallel to the sublattice B one and the
saturated magnetization is σ = 2 5

2 − 5
4 4 = 0, in agreement

with the experimental finding that the magnetization goes to
zero when the temperature approaches zero. The Hamiltonian
of the system is

H = −κA

∑

〈〈i j〉〉A

JA
i ·JA

j −κB

∑

〈〈i j〉〉B

JB
i ·JB

j +κ
∑

〈i j〉
JA

i ·JB
j . (36)

The first two terms describe the ferromagnetic Heisenberg
intra-sublattice exchange κA > 0, κB > 0, while the
third term describes the inter-sublattice exchange which is
antiferromagnetic κ > 0. To proceed we use the Holstein–
Primakoff representation of the total angular momentum
vectors JA

j (a
+
j , a j ) and JB

j (b
+
j , b j), where a+

j , a j and b+
j , b j

are Bose fields, and repeat the calculations from sections 2
and 3. The magnetization of the system gAMA + gB MB as
a function of temperature is depicted in figure 9 for parameters
κA/κ = 0.45 and κB/κ = 0.001. The parameters are chosen
so that the calculations reproduce the experimental value of the
ratio TN/T ∗.

The profile of the magnetization–temperature curve is
in very good agreement with the experimental zero-field-
cooling (ZFC) magnetization curves [6, 7]. The anomalous
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temperature dependence of the magnetization is reproduced,
but there is an important difference between the interpretation
of the experimental results in [5–9] and the present theoretical
results. In the experimental papers TN is the temperature
at which both the Mn and V magnetization become equal
to zero. The present theory predicts two phases: at
low temperatures (0, T ∗) sublattice Mn magnetization and
sublattice V magnetization contribute to the magnetization
of the system, while at high temperatures (T ∗, TN) only Mn
ions have non-zero spontaneous magnetization. The vanadium
sublattice magnetization set in at T ∗, and evidence for this is
the abrupt decrease of magnetization below T ∗, which also
indicates that the magnetic order of vanadium electrons is
antiparallel to the order of Mn electrons.

For samples cooled in a field (FC magnetization) the field
leads to the formation of a single domain and, in addition,
increases the chaotic order of the spontaneous magnetization
of the vanadium sublattice, which is antiparallel to it. As
a result the average value of the vanadium magnetic order
decreases and does not compensate the Mn magnetic order.
The magnetization curves depend on the applied field, and do
not go to zero. For a larger field the (FC) curve increases
when temperature decreases below the Néel temperature. It
has a maximum at the same temperature T ∗ < TN as the ZFC
magnetization and a minimum at T ∗

1 < T ∗. Below T ∗
1 the

magnetization increases monotonically when the temperature
approaches zero.

The experiments with samples cooled in a field (FC
magnetization) provide a new opportunity to clarify the
magnetism of the manganese vanadium oxide spinel. The
applied field is antiparallel to the vanadium magnetic moment
and strongly affect it. On the other hand, the experiments
show that there is no difference between ZFC and FC
magnetization curves when the temperature runs over the
interval (T ∗, TN) [6, 7]. They begin to diverge when the
temperature is below T ∗. This is in accordance with the
theoretical prediction that the vanadium magnetic moment
does not contribute to magnetization when T > T ∗ and T ∗ is
the temperature at which the vanadium ions start to contribute
the magnetization of the system. Because of the strong field,
the two vanadium bands are split and the magnetic moment of
one of the t2g electrons is reoriented to be parallel with the field
and magnetic order of the Mn electrons. The description of this
case is more complicated and requires three magnetic orders to
be involved. When T ∗ < T < TN only Mn ions have non-zero
spontaneous magnetization. At T ∗ vanadium magnetic order
antiparallel to the magnetic order of Mn sets in and partially
compensates it. Below T ∗

1 the reoriented electron gives a
contribution, which explains the increasing magnetization of
the system when the temperature approaches zero. A series of
experiments with different applied fields could be decisive for
the confirmation or rejection of the T ∗ transition. Increasing
the applied field one expects an increase of T ∗

1 and when
the field is strong enough, so that all vanadium electrons are
reoriented, an anomalous increasing of magnetization below
T ∗ would be obtained as within the ferromagnetic phase of
UGe2 [12].

5. Summary

In summary, I have worked out a renormalized spin-wave
theory and its extension to describe the two phases (0, T ∗)
and (T ∗, TN) of a two-sublattice ferrimagnet. Comparing
figure 4 in the present paper and figure 4 in [1], and figure 8
in the present paper and figure 5 in [1], one becomes aware
of the relevance of the present calculations for the accurate
reproduction of the basic features of the system near the
characteristic temperatures TN and T ∗.

The present theory of ferrimagnetism permits us to
consider more complicated systems such as the CeCrSb3

compound [13] or the spinel Fe3O4 which are two-sublattice
ferrimagnets but with three spins.
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Appendix

To make more transparent the derivation of the equations for
the Hartree–Fock parameters (equations (20)) I consider the
first term (the sublattice A term) in the Hamiltonian of the
magnon–magnon interaction equation (6). To write this term
in the Hartree–Fock approximation one represents the product
of two Bose operators in the form

a+
i a j = a+

i a j − 〈a+
i a j〉 + 〈a+

i a j〉 (A.1)

and neglects all terms (a+
i a j − 〈a+

i a j〉)2 in the four-magnon
interaction Hamiltonian. The result is
1
2 a+

i a j a
+
i ai ≈ −〈a+

i a j〉〈a+
i ai〉 + 〈a+

i a j〉a+
i ai + a+

i a j〈a+
i ai〉

1
2 a+

j ai a
+
j a j ≈ −〈a+

j ai〉〈a+
j a j〉 + 〈a+

j ai〉a+
j a j + a+

j ai〈a+
j a j〉

1
2 a+

j a j a
+
i a j ≈ −〈a+

j a j〉〈a+
i a j〉 + 〈a+

j a j〉a+
i a j

+ a+
j a j〈a+

r a j〉
a+

i ai a
+
j a j ≈ −〈a+

i ai〉〈a+
j a j〉 + 〈a+

i ai〉a+
j a j + a+

i ai〈a+
j a j〉

− 〈a+
i a j〉〈a+

j ai〉 + 〈a+
i a j〉a+

j ai + a+
j ai〈a+

i a j〉.

(A.2)

The Hartree–Fock approximation of the sublattice A part of the
Hamiltonian of the magnon–magnon interaction is
1
4 J1

∑

〈〈i j〉〉A

[a+
i a+

j (ai − a j)
2 + (a+

i − a+
j )2ai a j ]

≈ 12N J1s2
1 (u1 − 1)2 + J1s1(u1 − 1)

×
∑

〈〈i j〉〉A

(a+
i ai + a+

j a j − a+
j ai − a+

i a j) (A.3)

where the Hartree–Fock parameter u1 is defined by the
equation

u1 = 1 − 1

6s1

1

N

∑

k∈Br

ek〈a+
k ak〉. (A.4)

Combining the sublattice A part of the Hamiltonian
equation (5) (the first term) and equation (A.3) one obtains the
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Hartree–Fock approximation for the sublattice A part of the
Hamiltonian:

H A ≈ 12N J1s2
1 (u1 − 1)2 + J1s1u1

×
∑

〈〈i j〉〉A

(a+
i ai + a+

j a j − a+
j ai − a+

i a j ). (A.5)

In the same way one obtains the Hartree–Fock approxima-
tion of the sublattice B and inter-sublattices parts of the Hamil-
tonian. The result is the HHF Hamiltonian equations (7)–(9).

To calculate the thermal average 〈a+
k ak〉, in equa-

tion (A.4), one utilizes the Hamiltonian HHF. Therefore, the
matrix element depends on the Hartree–Fock parameters, and
equation (A.4) is one of the self-consistent equations for these
parameters.

The matrix element can be represented in terms of αk(α
+
k )

and βk(β
+
k ) equations (13):

〈a+
k ak〉 = u2

knα
k + v2

k nβ

k + v2
k (A.6)

where nk = 〈α+
k αk〉, 〈β+

k βk〉 are the Bose functions of α and β

excitations. Substituting the thermal average in equation (A.4)
with equation (A.6), one obtains that equation (A.4) is exactly

the first equation of the system equations (20) which in turn is
obtained from the first of the equations (19).
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